Problem 1.37

Find formulas for r, θ, ϕ in terms of x, y, z (the inverse, in other words, of Eq. 1.62).

Solution

Eq. 1.62 gives the formulas to switch from Cartesian coordinates (x, y, z) into spherical coordinates $(r, \phi, \theta), \theta$ being the angle from the polar axis.

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \phi \tag{1.62}\\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{array}\right.
$$

Square both sides of each equation and add the respective sides together.

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =(r \sin \theta \cos \phi)^{2}+(r \sin \theta \sin \phi)^{2}+(r \cos \theta)^{2} \\
& =r^{2} \sin ^{2} \theta \cos ^{2} \phi+r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \cos ^{2} \theta \\
& =r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+r^{2} \cos ^{2} \theta \\
& =r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta \\
& =r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =r^{2}
\end{aligned}
$$

Take the square root of both sides, choosing the positive root since the distance from the origin is positive.

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Eliminate r and θ by dividing the respective sides of the first two equations.

$$
\frac{y}{x}=\frac{r \sin \theta \sin \phi}{r \sin \theta \cos \phi}=\tan \phi \quad \rightarrow \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Solve the third equation for θ.

$$
\cos \theta=\frac{z}{r}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \quad \rightarrow \quad \theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
$$

Therefore, the formulas to switch from spherical coordinates (r, ϕ, θ) to Cartesian coordinates (x, y, z) are

$$
\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
\theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{array} .\right.
$$

The formula for θ can be written in terms of the inverse tangent as well. Draw the implied right triangle and determine the missing side using the Pythagorean theorem.

Consequently,

$$
\tan \theta=\frac{\sqrt{x^{2}+y^{2}}}{z} \rightarrow \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) .
$$

